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The Johnson-Lindenstrauss (JL) Transform says that, informally, we can embed high-dimensional points into
a much lower dimension, while still preserving their pairwise distances. In this post we will start with the
classical JL transform, then focus on the Fast JL Transform (FJLT) by Ailon and Chazelle [AC09], which
achieves the JL embedding more efficiently (w.r.t. runtime and randomness). We will develop the FJLT from
the perspective of “preconditioning” a sparse estimator, which comes with nice intuition from Fourier duality.
We conclude by mentioning more recent developments in this area (faster/sparser/derandomizeder).

Motivation. Aside from being an interesting structural result, the JL transform also has algorithmic and
machine-learning applications. Eg, any application that only depends on approximate pairwise distances
(such as nearest-neighbors), or even on pairwise inner-products1 (such as kernel methods) may equivalently
work with the dimensionality-reduced version of their input. This also has applications in sketching and
scarification.

1 Classical JL

The JL embedding theorem is:

Theorem 1. Given points x1, . . . , xn ∈ Rd, and ε > 0, there exists an embedding f : Rd → Rk such that

∀i, j : (1− ε)||xi − xj ||2 ≤ ||f(xi)− f(xj)||2 ≤ (1 + ε)||xi − xj ||2

and k = O(ε−2 logn).

That is, the embedding roughly preserves pairwise distances in `2. Think of the regime n� d� k. Note
that the target dimension k = O(ε−2 logn) is (perhaps surprisingly) independent of the source dimension d,
and only logarithmic in the number of points n.

In fact, a random linear map works as an embedding (w.h.p.). This is established by the following lemma.

Lemma 1. For any δ > 0, set k = O(ε−2 log(1/δ)), and let A ∈ Rk×d be a random matrix with iid normal
N (0, 1/k) entries. Then

∀x ∈ Rd : Pr
A

[
||Ax||22 ∈ (1± ε)||x||22

]
≥ 1− δ

That is, a random matrix preserves the norm of vectors with good probability. To see that this implies the
JL Theorem, consider applying the matrix A on the O(n2) vectors of pairwise differences (xi − xj). For fixed
i, j, the lemma implies that ||A(xi − xj)|| ≈ ||xi − xj || except w.p. δ. Thus, setting δ = 1/n3 and union
bounding, we have that A preserves the norm of all differences (xi − xj) with high probability. Letting the
embedding map f = A, we have

∀i, j : ||f(xi)− f(xj)|| = ||Axi −Axj || = ||A(xi − xj)|| ≈ ||xi − xj ||

as desired. 2

Runtime. The runtime of embedding a single vector with this construction (setting δ = 1/n3 and ε = O(1))
is O(dk) = O(d logn). In the Fast JL below, we will show how to do this in time almost O(d log d).

1Because, if the norms ||xi − xj ||, ||xi||, and ||xj || are approximately preserved, then so is the inner-product 〈xi, xj〉.
2Note that it was important that f be linear for us to reduce preserving pairwise-distances to preserving norms.
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We will now prove Lemma 1. First, note that our setting is scale-invariant, so it suffices to prove the lemma
for all unit vectors x.

As a warm-up, let g ∈ Rd be a random vector with entires iid N (0, 1), and consider the inner-product

Y := 〈g, x〉

(for a fixed unit vector x ∈ Rd). Notice the random variable Y has expectation E[Y ] = 0, and variance

E[Y 2] = E[〈g, x〉2] = ||x||2

Thus, Y 2 is an unbiased estimator for ||x||2. Further, it concentrates well: assuming (wlog) that ||x|| = 1,
we have Y ∼ N (0, 1), so Y 2 has constant variance (and more generally, is subguassian3 with a constant
parameter).

This would correspond to a random linear projection into 1 dimension, where the matrix A in Lemma 1 is
just A = gT . Then ||Ax||2 = 〈g, x〉2 = Y 2. However, this estimator does not concentrate well enough (we
want tail probability δ to eventually be inverse-poly, not a constant).

We can get a better estimator for ||x||2 by averaging many iid copies. In particular, for any iid subgaussian
random variables Zi, with expectation 1 and subguassian parameter σ, the Hoeffding bound gives

Pr
[∣∣∣∣∣
(

1
k

k∑
i=1

Zi

)
− 1

∣∣∣∣∣ > ε

]
≤ e−Ω(kε2/σ2)

Applying this for Zi = Y 2
i and σ = O(1), we can set k = O(ε−2 log(1/δ)) so the above tail probability is

bounded by δ.

This is exactly the construction of Lemma 1. Each row of A is 1√
k
gTi , where gi ∈ Rd is iid N (0, 1). Then

||Ax||2 =
k∑
i=1
〈 1√

k
gi, x〉2 = 1

k

k∑
i=1
〈gi, x〉2 = 1

k

k∑
i=1

Y 2
i

And thus, for ||x|| = 1,
Pr
[∣∣||Ax||2 − 1

∣∣ > ε
]
≤ δ

as desired in Lemma 1. �

To recap, the key observation was that if we draw g ∼ N(0, Id), then 〈g, x〉2 is a “good” estimator of ||x||2,
so we can average O(ε−2 log(1/δ)) iid copies and get an estimator within a multiplicative factor (1± ε) with
probability ≥ 1− δ. Filling the transform matrix A with guassians is clearly not necessary; any distribution
with iid entries that are subguassian would work, with the same proof as above. For example, picking each
entry in A as iid ± 1√

k
would work.

We can now think of different JL transforms as constructing different estimators of ||x||2. For example, can
we draw from a distribution such that g is sparse? (Not quite, but with some “preconditioning” this will
work, as we see below).

3 Subguassian with parameter σ basically means tail probabilities behave as a guassian with variance σ2 would behave.
Formally, a zero-mean random variable X is “subgaussian with parameter σ” if: E[eλX ] ≤ eσ2λ2/2 for all λ ∈ R.
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2 Fast JL

2.1 First Try: Coordinate Sampling

As a (bad) first try, consider the estimator that randomly samples a coordinate of the given vector x, scaled
appropriately. That is,

Y :=
√
d xj for uniformly random coordinate j ∈ [d]

Equivalently, draw a random standard basis vector ej , and let Y :=
√
d〈ej , x〉.

Notice that Y 2 has the right expectation:

E[Y 2] = E
j
[(
√
dxj)2] = dE

j
[x2
j ] = ||x||2

However, it does not concentrate well. The variance is V ar[Y 2] = V ar[dx2
j ] = d2V ar[xj ]. If x is a standard

basis vector (say x = e1), then this could be as bad as V ar[Y 2] ≈ d. This is bad, because it means we would
need to average Ω(d) iid samples to get a sufficiently good estimator, which does not help us in reducing the
dimension of x ∈ Rd.

The bad case in the above analysis is when x is very concentrated/sparse, so sampling a random coordinate
of x is a poor estimator of its magnitude. However, if x is very “spread out”, then sampling a random
coordinate would work well. For example, if all entries of x are bounded by ±O(

√
1
d ), then V ar[Y 2] = O(1),

and taking iid copies of this estimator would work. This would be nice for runtime, since randomly sampling
a coordinate can be done quickly (it is not a dense inner-product).

Thus, if we can (quickly) “precondition” our vector x to have ||x||∞ ≤ O(
√

1
d ), we could then use coordinate

sampling to achieve a fast JL embedding. We won’t quite achieve this, but we will be able to precondition
such that ||x||∞ ≤ O(

√
log(d/δ)

d ), as described in the next section. With this in mind, we will need the
following easy claim (that with the weaker bound on `∞, coordinate sampling works to reduce the dimension
to almost our target dimension).

Lemma 2. Let t = Θ(ε−2 log(1/δ) log(d/δ)). Let S ∈ Rt×d be a matrix with rows si :=
√

d
t e

(i)
ji
, where each

ji ∈ [d] is an iid uniform index. (That is, each row of S randomly samples a coordinate, scaled appropriately).
Then, for all x s.t ||x||2 = 1 and ||x||∞ ≤ O(

√
log(d/δ)

d ), we have

Pr
S

[||Sx||2 ∈ 1± ε] ≥ 1− δ

Proof.

||Sx||2 =
t∑
i=1
〈
√
d

t
eji
, x〉2 = 1

t

t∑
i=1

d(xji
)2

Then, the r.vs {d(xji)} are iid and absolutely bounded by O(
√

log(d/δ)), so by Chernoff-Hoeffding and our
choice of t,

Pr[|1
t

t∑
i=1

d(xji
)2 − 1| > ε] ≤ e−Ω(ε2t/ log(d/δ)) ≤ δ

�
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2.2 FJLT: Preconditioning with random Hadamard

The main idea of FJLT is that we can quickly precondition vectors to be “smooth”, by using the Fast
Hadamard Transform.

Recall the d× d Hadamard transform Hd (for d a power of 2) is defined recursively as

H1 := 1, H2d := 1√
2

[
Hd Hd

Hd −Hd

]
More explicitly, Hd[i, j] = 1√

d
(−1)〈i,j〉 where indices i, j ∈ {0, 1}log d, and the inner-product is mod 2. The

Hadamard transform is just like the discrete Fourier transform4 : it can be computed in time O(d log d) by
recursion, and it is an orthonormal transform.

Intuitively, the Hadamard transform may be useful to “spread out” vectors, since Fourier transforms take
things that are sparse/concentrated in time-domain to things that are spread out in frequency domain (by
time-frequency duality/Uncertainty principle). Unfortunately this won’t quite work, since duality goes both
ways: It will also take vectors that are already spread out and make them sparse.

To fix this, it turns out we can first randomize the signs, then apply the Hadamard transform.

Lemma 3. Let Hd be the d× d Hadamard transform, and let D be a random diagonal matrix with iid ±1
entries on the diagonal. Then,

∀x ∈ Rd, ||x|| = 1 : Pr
D

[||HdDx||∞ > Ω(
√

log(d/δ)
d

)] ≤ δ

We may expect something like this to hold: randomizing the signs of x corresponds to pointwise-multiplying
by random white noise. White noise is spectrally flat, and multiplying by it in time-domain corresponds to
convolving by its (flat) spectrum in frequency domain. Thus, multiplying by D should “spread out” the
spectrum of x. Applying Hd computes this spectrum, so should yield a spread-out vector.

The above intuition seems messy to formalize but the proof is surprisingly simple. 5

Proof of Lemma 3. Consider the first entry of HdDx. Let D = diag(a1, a2, . . . , ad) where ai are iid ±1. The
first row of Hd is 1√

d

[
1 1 . . . 1

]
, so

(HdDx)[1] = 1√
d

∑
i

aixi

Here, the xi are fixed s.t. ||x||2 = 1, and the ai = ±1 iid. Thus we can again bound this by Hoeffding 6

(surprise),

Pr[|
d∑
i=1

ai
xi√
d
| > η] ≤ e−Ω(η2d/||x||22)

For η = Ω(
√

log(d/δ)
d ), this probability is bounded by ( δd ). Moreover, the same bound applies for all coordinates

of HdDx, since all rows of Hd have the form 1√
d

[
±1 ±1 . . . ±1

]
. Thus, union bound over d coordinates

establishes the lemma. �
4Indeed, it is exactly the Fourier transform over the group (Z2)n. For more on Fourier transforms over abelian groups, see for

example Luca’s notes.
5This proof presented slightly differently from the one in Alon-Chazelle, but the idea is the same.
6 The following form of Hoeffding bound is useful (it follows directly from Hoeffding for subgaussian variables, but is

also a corollary of Azuma-Hoeffding): For iid zero-mean random variables Zi, absolutely bounded by 1, Pr[|
∑

ciZi| > ε] ≤
2exp(− ε2

2
∑

i
c2

i

).

4

https://lucatrevisan.wordpress.com/2016/03/16/cs294-lecture-15-abelian-cayley-graphs/


2.3 The Full Fast JL Transform

This presentation of FJLT is due to Jelani Nelson; see the notes [Nel10].

Putting all the pieces together, the FJLT is defined as:

A = JSHdD

or,
A : Rd D−→ Rd Hd−→ Rd S−→ Rt J−→ Rk

where

• S: the sparse coordinate-sampling matrix of Lemma 2

• Hd: the d× d Hadamard transform.

• D: diagonal iid ±1.

• J : a dense “normal” JL matrix (iid Gaussian entries).

For parameters

• t = Θ(ε−2 log(1/δ) log(d/δ))

• k = Θ(ε−2 log(1/δ))

That is, we first precondition with the randomized Hadamard transform, then sample random coordinates
(which does most of the dimensionality reduction), then finally apply a normal JL transform to get rid of the
last log(d/δ) factor in the dimension.

Correctness. Since the matrix D and the Hadamard transform are isometric, they do not affect the norms
of vectors. Then, after the preconditioning, Lemma 2 guarantees that S only affects norms by (1± ε), and
Lemma 1 guarantees that the final step is also roughly isometric. These steps fail w.p. δ, so the final transform
affects norms by at most say (1± 3ε) except w.p. 3δ. This is sufficient to establish the JL embedding.

Runtime. For computing a JL embedding (ie, setting δ = 1/n3, ε = O(1)), the time to embed a single vector
is O(d log d+ log3 n).

3 Closing Remarks

Optimality. The target dimension given by the JL construction is known to be optimal. That is, one
cannot embed n points into dimension less than k = Ω(ε−2 logn) with distortion ε. The first near-optimal
lower-bound, in [Alo03, Section 9] works by showing upper-bounds on the number of nearly-orthogonal
vectors in a given dimension (so a too-good embedding of orthogonal vectors would violate this bound). A
more recent, optimal bound, is in [KMN11, Section 6]. They actually show optimality of the JL Lemma (that
is, restricting to linear embeddings), which works (roughly) by arguing that if the target dimension is too
small, then the kernel is too big, so a random vector is likely to be very distorted.

Recent Advances. Note that the FJLT is fast, but is not sparse. We may hope that embedding a sparse
vector x will take time proportional to the sparsity of x. A major result in this area was the sparse JL
construction of [KN14]; see also the notes [Nel10]. There is also work in derandomized JL, see for example
[KMN11].

I’ll stop here, since I haven’t read these works yet, but perhaps we will revisit this another time.
This post was derived from my talk at Berkeley theory retreat, on the theme of “theoretical guarantees for
machine learning.”
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