
Constructive Hardness Amplification via Uniform Direct Product

Preetum Nakkiran

Jul 07, 2016

This post was motivated by trying to understand the recent paper “Learning Algorithms from Natural Proofs”,
by Carmosino-Impagliazzo-Kabanets-Kolokolova [CIKK16]. They crucially use the fact that several results in
hardness amplification can be made constructive. In this post, we will look at the Uniform Direct Product
Theorem of Impagliazzo-Jaiswal-Kabanets-Wigderson [IJKW10]. We will state the original theorem and
algorithm of [IJKW10], then we will present a simpler analysis for a (weaker) non-uniform version of their
algorithm, which contains some of the main ideas.

For a given function f : {0, 1}n → {0, 1}`, say a circuit C “ε-computes f” if C computes f correctly on
at least ε-fraction of inputs. That is, Prx[C(x) = f(x)] ≥ ε. We are interested in the following kind of
direct product theorem (informally): “If function f cannot be ε-computed by any small circuit C, then the
direct-product f⊗k(x1, x2, . . . xk) := (f(x1), f(x2), . . . , f(xk)) cannot be computed better than roughly εk by
any similarly small circuit.” 1

This is usually proved2 in contrapositive, by showing: If there exists a circuit C ′ that εk-computes f⊗k, then
there exists a similarly-sized circuit C that ε-computes f . The very interesting part is, this amplification can
be made fully constructive, by a simple algorithm.
Theorem 1 ([IJKW10], and Theorem 4.1 [CIKK16]). Let k ∈ N, ε > 0. There is a (uniform) PPT algorithm
A with the following guarantees:

• Input: A circuit C ′ that ε-computes f⊗k for some function f : {0, 1}n → {0, 1}`.

• Output: With probability Ω(ε), output a circuit C that (1− δ)-computes f .

for δ = O(log(1/ε)/k). In particular, (1− δ) = εO(1/k). The circuit C is of size |C ′|poly(n, k, log(1/δ), 1/ε).

Note that we can only hope to construct the good circuit with probability Ω(ε), since unique decoding is
impossible: the circuit C ′ may ε-compute up to (1/ε) different functions f (agreeing with a different function
on each ε-fraction of its inputs).

1 Uniform Version

The algorithm for Theorem 1 is:

A(C ′):

Input: A circuit C ′ that ε-computes the direct-product f⊗k.

1. Pick k iid random inputs xi ∈ {0, 1}n, let ~b = (x1, . . . , xk), and evaluate C ′(~b).

2. Pick a random subset A ⊂ {x1, . . . , xk} of size k/2. Record v := C ′(~b)|A as the answers of C ′ on
the inputs in A.

1 If this seems trivial, consider the k = 2 case. We want to show that if Prx[C(x) = f(x)] ≤ ε for all small circuits C, then
Prx,y [C′(x, y) = (f(x), f(y))] . ε2 for all similarly small circuits C′. This is clearly true if the circuit C′ operates independently
on its inputs, but not as clear otherwise (eg, the correctness of C′-s two outputs could be highly correlated). Indeed, proofs of
the direct-product theorem take advantage of this correlation.

2See the last section for good references to prior proofs.

1

3. Output the circuit CA,v defined below (with the values v on the subset A hardcoded).

CA,v is defined as the randomized circuit:

CA,v(x):

On input x ∈ {0, 1}n, check if x ∈ A, in which case output v|x (the hardcoded value of x according to
v). Otherwise, repeat the following T = O(log(1/δ)/ε) times.

1. Sample (k/2− 1) additional iid random strings {yj}, each yj ∈ {0, 1}n, and let ~b := (x,A, {yj}) be
the tuple of k strings.

2. Evaluate C ′(π(~b)) for a random permutation π of the k inputs.

3. If the answers of C ′ restricted to A agree with the hardcoded values v, then output C ′(π(~b))|x,
(the answer C ′ gave for x), and stop.

Output an error if no output is produced after T iterations.

Intuition: Suppose the values v returned when the Algorithm queries C ′(b) are actually correct. That is,
v|x = f(x) for all x ∈ A. Then, the circuit CA,v evaluates C ′ on input ~b = (b1, . . . bk), and it knows the
correct value of f(bi) is on half of these coordinates. So, CA,v(x) tries to estimate whether a random point
C ′(~b) is correct or not, based on if it agrees on the known subset of coordinates. The idea is that a value of
C ′(~b) that is wrong on many coordinates is unlikely to pass this test. (See [IJKW10] for the full proof).

Now, in the remainder of this note, we will develop and prove a simpler (weaker) version.

2 Symmetrizing

The direct-product as defined above has a permutation symmetry:

f⊗k(π(x1, . . . xk)) = π(f⊗k(x1, . . . xk))

for any permutation π.

The algorithm of Theorem 1 strongly takes advantage of this symmetry (indeed, the algorithm would not work
as promised if we omitted the random permutations).3 To simplify presentation, it helps to define the direct-
product fk as a function over k-multisets of inputs, instead of over k-tuples of inputs. Following [IJKW10],
for the remainder of this note, we will work in the setting of k-multisets, and denote the k-multiset direct
product as fk. That is, fk takes as input an (unordered) k-multiset B = {x1, x2, . . . , xk}, and returns the
k-tuple

fk({x1, x2, . . . , xk}) := (f(x1), f(x2), . . . , f(xk))

We consider the probability measure induced by the uniform measure over tuples. That is, “pick a random
k-multiset of U” means to generate a multiset by picking k iid random elements from the universe U , and
forming the (unordered) multiset containing them.4

3Consider a C′(x1, . . . xk) that is correct if x1 lies in some ε-density set, and random otherwise. Without the random
permutations, CA,v(x) will always evaluate C′(x, . . .), and produce no output for (1− ε)-fraction of inputs x.

4So for example, for k = 3 the multiset {a, a, a} has lower probability of being drawn than {a, a, b} for a 6= b.

2

The notion of ε-computing remains the same:5 A circuit C ′(B) ε-computes fk if

Pr
B∼random k-multiset

[C ′(B) = fk(B)] ≥ ε

Note that C ′ is allowed to give different answers for the same element in a multiset, e.g. if C ′({a, a, a}) =
(y1, y2, y3), the yis may all be distinct – we don’t take advantage of this symmetry.

3 Oracle Version

Here we present and prove a simpler version of the algorithm, in the case when we also have access to an
oracle for f . (This can be seen as a non-uniform version).

Theorem 2. Let k ∈ N, ε > 0, and f : {0, 1}n → {0, 1}`. There is a PPT algorithm Af with oracle access to
f , with the following guarantees:

• Input: A circuit C ′ that ε-computes fk.

• Output: With probability 0.99, output a circuit C that (1− δ)-computes f .

for δ = O(log(k)/(εk)). The circuit C is of size |C ′|poly(n, k, log(1/δ), 1/ε).

The idea is, in Step 2 of Algorithm A, we can generate the correct values v for the inputs in set A, by
querying the oracle. That is, we set v := f(A) directly, instead of using our approximate circuit C ′. In fact,
if we have a perfect oracle for f we can simplify the algorithm even further.

The algorithm is:

Af (C ′):

1. Pick T = O(log(k)/ε) random (k − 1)-multisets A1, . . . AT , each Ai containing (k − 1) random
inputs from {0, 1}n.

2. Query the f -oracle, and record the values of vAi := {f(x) : x ∈ Ai} for all sets Ai.

3. Output the circuit CA,v defined below (with the values vAi
on the subsets Ai hardcoded).

CA,v is defined as the circuit:

CA,v(x):

For each i = 1 . . . T = O(log(k)/ε):

1. Let Bi := {x} ∪Ai.

2. Evaluate C ′(Bi).

3. If the answers of C ′(Bi) restricted to Ai agree with the hardcoded values vAi
= f(Ai), then output

C ′(Bi)|x, (the answer C ′ gave for x), and stop.

5For our purposes, having a randomized circuit that ε-computes f⊗k is essentially equivalent to having a randomized circuit
that ε-computes fk. The proofs will extend to randomized circuits, where we say C ε-computes f if PrC,x[C(x) = f(x)] ≥ ε,
taken over randomness of C as well as x.

3

Output an error if no output is produced after T iterations.

Proof of Theorem 2. Parameters: We will have δ = 10000 log(k)/(εk) and T = 100 log(k)/ε. (Think of
aiming for δ ≈ 1/k).

We will argue that
Pr
A,C,x

[CA,v(x) 6= f(x)] ≤ δ/100 (1)

Where the probability is over the randomness of algorithm Af (random choice of sets Ai), and random input
x ∈ {0, 1}n. Then, by Markov

Pr
A

[
Pr
C,x

[CA,v(x) 6= f(x)] > δ

]
≤ 1/100

so the algorithm Af will produce a good circuit CA,v except with probability 1/100.

In the execution of circuit CA,v(x), let us say “iteration i fails” if Step 3 of the circuit at iteration i outputs a
wrong answer. That is, iteration i fails if C ′(Bi) is correct on the (k − 1) values in Ai = Bi \ {x}, but wrong
on x.

Consider the probability that iteration 1 fails. Notice that the distribution of (x,A1, B1) is equivalently
generated as:

{(x,A1, B1)} ≡ {(x,A1, B1)}
A1 ∼ random (k − 1)-multiset B1 ∼ random k-multiset

x ∈ {0, 1}n x ∈ B1
B1 := {x} ∪A1 A1 := B1 \ {x}

That is, we can think of first sampling a random k-multiset B1, then sampling a random x ∈ B1. Iteration 1
only returns an output when C ′(B1) has at most 1 wrong answer (since it checks correctness on the (k − 1)
values of A1). Thus iteration 1 only fails if the random x ∈ B1 falls on this 1 (of k) answers. So

Pr
x,A1,B1

[Iteration 1 fails] ≤ 1
k

(2)

Now, we just union bound:

Pr[error] = Pr
A,C,x

[CA,v(x) 6= f(x)]

≤ Pr[no output produced after T iterations, or some iteration fails]
≤ Pr[no output produced] + T · Pr[Iteration 1 fails]

≤ Pr[no output produced] + T

k

For our choice of T, δ, the second term is T
k ≤ δ/200. We will show the first term is ≤ δ/200 as well,

completing the proof.

Produces output w.h.p.

It remains to show that the circuit CA,v produces an output with high probability. In Step 3 of the circuit
CA,v, notice that if C ′ is queried on a correct input Bi, it will pass the test and output a value.

The idea is: since C ′ is correct on ε-fraction of inputs, if we try T = Ω(log(1/δ)/ε) iid random inputs, we will
be sure to hit a correct input, except with probability O(δ). This doesn’t quite work, since the inputs Bi are
not iid random (they all contain the input x) – but this dependence is minimal, so it still works out.

4

Following [IJKW10], it helps to think in term of this bipartite graph. Define G as a biregular bipartite graph
between inputs x ∈ {0, 1}n, and k-tuples6 B ∈ ({0, 1}n)k, with an edge (x,B) if x ∈ B. We can think of the
circuit CA,v(x) as picking up to T random neighbors of x in the graph G, until hitting an input B where
C ′(B) is correct on all B \ {x}. We know that ε-fraction of k-tuples B are correct, and in fact we will show
that almost all inputs x have close to ε-fraction of their neighbors as correct.

Lemma 3. There are at most O(δ)-fraction of “BAD” inputs x ∈ {0, 1}n for which

Pr
B∈N(x)

[C ′(B) is correct] ≤ ε/10

This is sufficient to show that Pr[no output produced] ≤ O(δ), since for inputs x that are not BAD, sampling
T = Ω(log(k)/ε) iid neighbors of x will hit a correct neighbor, except with probability O(1/k) ≤ O(δ). 7

It is easier to show the related property:

Lemma 4 (Mixing Lemma). Let H ⊆ {0, 1}n be a set of inputs on the left of G, with the density of H at
least µ. Then, except for some 2e−Ω(µk)-fraction of tuples B, all tuples B on the right of G have

Pr
x∈N(B)

[x ∈ H] = µ± µ/2

Proof of Lemma 4. Drawing a uniformly random tuple B on the right is exactly drawing k iid samples of
inputs B := (x1, x2, . . . , xk). Then, by definition of G, picking a random neighbor x ∈ N(B) is just picking a
random x ∈ B. Thus, it is sufficient to show that if we draw k iid inputs x1, x2, . . . , xk, the fraction of inputs
that fall in H is within a multiplicative factor (1± 1/2) of its expectation µ (with high probability). This
follows immediately from Chernoff bounds. �

From this, the above Lemma 3 follows easily:
6Going back to tuples just to simplify the notation, so we can deal with the uniform measure.
7 (1− ε/10)T ≤ e−T ε/10 ≤ 1/k ≤ δ.

5

Proof of Lemma 3. Let BAD be the set of “bad” inputs x, where PrB∈N(x)[C ′(B) is correct] ≤ ε/10. Suppose
the density of BAD is µ. Let us count fraction of total edges in G that go between BAD, and the set of
correct tuples (which we call GOOD). By the mixing lemma, there are at least (ε − 2eΩ(µk)) fraction of
tuples B∗ with Prx∈N(B∗)[x is bad] ≥ µ/2. So there are at least (ε− 2eΩ(µk))(µ/2) fraction of edges between
the BAD and GOOD sets.

But, each bad input x has at most ε/10 fraction of edges into GOOD by definition, so the fraction of
BAD↔ GOOD edges is at most µ(ε/10).

Thus we must have

(ε− 2e−Ω(µk))(µ/2) ≤ µ(ε/10)
=⇒ µ ≤ O(log(1/ε)/k)

This gives µ ≤ δ/200 for our choice of δ. �

This concludes the proof of correctness of the oracle version (Theorem 2). �

4 Closing Remarks

• Note that in the oracle version, we were able to output a good circuit with probability 0.99, instead of
w.p. Θ(ε) as in the fully uniform version. This makes sense because if we have an f -oracle, we can
“check” if our circuit is actually computing the desired f , so we don’t run into the unique decoding
problem. (Indeed, we can construct an optimal version of algorithm Af of Theorem 2 from the algorithm
A of Theorem 1 in a black-box way, by checking if the output circuit of A mostly agrees with f on
enough random inputs).

• There were several simplifications we made from A to Af .
(1) We queried the oracle for the hardcoded values v, instead of the circuit.
(2) We hardcoded (k − 1)-multisets instead of (k/2)-multisets.
(3) We hardcoded T iid multisets {Ai}, instead of just one multiset A.
Note that we could not have done (2) without also doing (3) – otherwise there would not have been
enough mixing (the circuit would fail with probability close to ε). Also, (3) would not have worked in
the fully uniform case (A, without the oracle) – because then all the hardcoded sets will be correct
with only very small probability.

• The reason Theorem 2 has suboptimal parameters (eg, compare the setting of δ to Theorem 1) is
because our analysis used the loose union bound, instead of using the fact that circuit CA,v, by only
outputting values that pass a test, is doing rejection-sampling on a certain conditional probability space.
The tight analysis in [IJKW10] takes advantage of this fact.

• In the proof of Thereom 2, we used a property of the graph G that was essentially like an “Expander
Mixing Lemma”. We may hope that if we replace G with something sufficiently expander-like, we could
get a derandomized direct-product theorem. Indeed, something like this is done in [IJKW10] (“Uniform
direct product theorems: simplified, optimized, and derandomized”).

• I think the oracle version is sufficient for the applications in [CIKK16], since there we have query access
to the function f we are trying to learn/compress.

• For a good survey on direct-product for non-uniform hardness amplification, and the related “Yao’s
XOR Lemma”, see [GNW11] (which includes at least 3 different proofs of the non-uniform XOR lemma).
For a clean proof of Impagliazzo’s Hardore Set theorem, which is used in some proofs of the XOR
lemma, see for example Arora-Barak.

6

References

[CIKK16] Marco L Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Learn-
ing algorithms from natural proofs. In LIPIcs-Leibniz International Proceedings in Infor-
matics, volume 50. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016. URL: http:
//drops.dagstuhl.de/opus/volltexte/2016/5855/pdf/34.pdf.

[GNW11] Oded Goldreich, Noam Nisan, and Avi Wigderson. On yao’s xor-lemma. In Studies in Complexity
and Cryptography. Miscellanea on the Interplay between Randomness and Computation, pages
273–301. Springer, 2011. URL: http://www.wisdom.weizmann.ac.il/~oded/COL/yao.pdf.

[IJKW10] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uniform direct
product theorems: simplified, optimized, and derandomized. SIAM Journal on Computing,
39(4):1637–1665, 2010. URL: http://www.cs.columbia.edu/~rjaiswal/IJKW-Full.pdf.

7

http://drops.dagstuhl.de/opus/volltexte/2016/5855/pdf/34.pdf
http://drops.dagstuhl.de/opus/volltexte/2016/5855/pdf/34.pdf
http://www.wisdom.weizmann.ac.il/~oded/COL/yao.pdf
http://www.cs.columbia.edu/~rjaiswal/IJKW-Full.pdf

	Uniform Version
	Symmetrizing
	Oracle Version
	Closing Remarks

